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NEW SEPARATION AXIOMS ON CLOSURE SPACES
GENERATED BY RELATIONS

RIA GUPTA AND A. K. DAS

ABSTRACT. In this paper, some higher separation axioms on closure spaces
are introduced by using binary relations. Further, characterizations, subspaces
and preservation under mapping of the newly defined spaces are also studied.

1. INTRODUCTION AND PRELIMINARIES

It is evident from recent developments that topological structures which are more
general than usual topology has many applications in allied branches of Science
and Engineering. Cech closure space defined by Cech [3] being a generalized topo-
logical space has been utilized in digital topology [4, 10, 11], a theory developed
in late 1960s for the study of geometric and topological properties of digital im-
ages [5, 6, 8, 9]. Cech closure spaces are obtained from the Kuratowski ones by
omitting the conditions of idempotency. In 2006, Allam, Bakeir and Abo-Tabl [1]
introduced a new approach to define closure spaces through relations and stud-
ied lower separation axioms, continuous functions and subspaces on closure spaces
generated by relations. In 2008, the same authors [2] introduced some methods
to generate topologies via binary relations. G. Liu [7] in 2010, utilized the notion
of aftersets and foresets [1] which is renamed as R-left and R-right relative sets in
[7]. In the present paper, we introduced and studied higher separation axioms on
closure spaces generated by relations.

Let X be any set then a relation on X is a subset of X x X, ie., RC X x X. The
formula (z,y) € R is abbreviated as £ Ry means that x is in relation R with y.

Definition 1.1. [3] A closure space is a pair (X,cl), where X is any set and
cl: P(X)— P(X) is a mapping called as closure operator associating each subset
A C X with a subset c¢l(A) C X, such that

(1) cl(¢) = ¢,

(2) ACcl(A),

(3) cl(AUB) = cl(A)Ucdl(B).

The subset cl(A) C X is called as closure of A.

Definition 1.2. [1] If R is a relation on X, then the aftersets of x € X is 2R where
zR = {y : xRy} and foresets of x € X is Rx where Rz = {y : yRz}.

Remark 1.3. The above aftersets and foresets are represented as rr(z) and [g(x)
respectively in [7].
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Definition 1.4. [1] Let R be any binary relation on X, a set (p) R is the intersection
of all aftersets containing p, i.e.,

ﬂ (zR) if there exists « such that p € xR |
(p)R _ pETR

10} otherwise.

Also, R(p) is the intersection of all foresets containing p, i.e.,

ﬂ (Rx) if there exists « such that p € Rz |
R<p> _ pERx

10} otherwise.

Definition 1.5. [1] Let X be any set and R C X x X be any binary relation on
X. The relation R gives rise to a closure operation clg on X as follows:

clp(A) = AU {z cX: (x)RﬂA;égb}
The set along with the operator clg is a closure space. In the closure space (X, clr),
a set A is closed [1] if clr(A) = A.

Lemma 1.6. [1] In a closure space (X,clr) the open sets are precisely the unions

U (Ng(x)) for all AC X and

Tz€A

(©)R if ()R # 0,

{z} if (@R =0
Lemma 1.7. [1] For any binary relation R on X if x € (y)R, then (z)R C (y)R.

NR(.’L’) =

Theorem 1.8. In a closure space (X, clg), if ()R is open, then X —(x)R is closed.

Proof. We know that (X — (z)R) C clr(X — (z)R). We have to prove clr(X —
(z)R) C (X — (z)R). Suppose clr(X — (z)R) ¢ (X — (z)R) then there exist
y € clr(X — (z)R) such that y ¢ (X — (x)R) implies y € (z)R. Then by using
lemma 1.7 (y)R C (z) R which implies (y) R does not intersect (X — (z)R) implies
y ¢ clr(X — (z)R). Which is a contradiction. So clr(X — (z)R) C (X — (z)R).
Hence clr(X — (x)R) = (X — (z)R). O

Theorem 1.9. In a closure space (X,clr), clr({y)R) is the smallest closed set
containing (y)R.

Proof. Let B be the smallest closed set containing (y) R. Since B is closed, clr(B)

B and (y)R C B = clr(B). It clg({y)R) ¢ clr(B) then there exists z € clr((y)R)
such that z ¢ clgr(B) implies x ¢ B. But = € clr({y)R) implies (z)R N (y)R # ¢.
Thus (z) RN B # ¢ as (y)R C B. Which is a contradiction. So clg({y)R) C clr(B).
Hence clr({y)R) is the smallest closed set containing (y)R. O

Definition 1.10. [1] Let R be any binary relation, then a closure space (X, clg) is
called T3-space if and only if for every two distinct points z,y € X both z ¢ (y)R
and y ¢ (z)R are holds.

Definition 1.11. [1] Let A C X and R4 C R, then (A, clg,) is called a closure
subspace of the closure space (X, clg) if (z)Ra = (z)RN A for all z € A.
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Remark 1.12. [3] Let Y be a subspace of a closure space X. Then
(a) A is closed (open) in X implies Y N A is closed (open) in Y.
(b) Y is closed in X and A is closed set in Y implies A is closed in X.

Lemma 1.13. [1] Let (A, clr,) be a closure subspace of a closure space (X, clg),
then (x)Ra = () RN A for all x € A if and only if clp,(B) = clgr(B) N A for all
B C A.

Theorem 1.14. [1] Let (X, clr) be a closure space and A C X then (A, clr,) is a
closure subspace if and only if clr,(B) = clgr(B) N A for all B C A.

2. NORMALITY

Definition 2.1. Let R be any binary relation on X, then a closure space (X, clg)
is said to be normal if for every two disjoint closed sets A and B in X, there exist
two disjoint open sets U and V containing A and B respectively.

Definition 2.2. Let R be any binary relation on X, then a closure space (X, clr)
is said to be strongly normal if for every two disjoint closed sets A and B there
exist x,y such that A C ({(x)R), B C ({y¢)R) and (z)RN (y)R = ¢.

Example 2.3. Let X be the set of natural numbers and R be the relation defined
on X as aRb if and only if a = b, for every a € X and b = a + n, for a > 2,
n=1,2,3,... . Here the aftersets are LR = {1} andiR={i+n:n=0,1,2,..},
fori>2. Thus, (1)R = {1} and (i) R={i+n:n=0,1,2...}, fori > 2. In this
space only disjoint closed sets are {1} and {2} which can be separated by (1)R and
(2)R respectively. Hence (X, clr) is a strongly normal closure space.

Observation 2.4. Fvery strongly normal space is normal.

Generally, a normal space need not be strongly normal as shown in the following
examples.

Example 2.5. Let X = {a,b,¢,d} and R be any binary relation on X, where R =
{(a,a), (a,c), (a,b), (b,a), (b,b) (b,d),(c,d), (c,a), (d,d), (d, C)}- Then (a)R =

{a}, (DR = {a,b}, (OR = {c}, ()R = {d} and clr({a}) = {a,b}, clr({b}) =
{b}* ClR({C}) = {C}v ClR({d}) = {d}7 ClR({a’b}) = {avb}7 CZR({CL,C}) = {a,b, C}7
cr({a,d}) ={a,b,d}, clr({b,c}) = {b,c}, clr({b,d}) = {b,d}, clr({c,d}) = {c,d},
cr({a,b,c}) ={a,b,c}, clr({a,b,d}) = {a,b,d}, clr({a,c,d}) = X, clr({b,c,d}) =
{b,¢,d}, cdr(X) = X, clr(¢) = ¢. Here the finite closure space (X, clgr) is normal
because for every two disjoint closed sets there exist disjoint open sets separating
the closed sets but not strongly normal because for two closed sets A = {a,b} and
B = {c,d} there doesn’t exist disjoint {x)R and {y)R separating them.

Example 2.6. Let X be the set of natural numbers and R be the relation defined on
X as aRb if and only if b = a+1. Here aftersets are 1R = {2} and iR = {i—1,i+1}
for every i > 2. Thus, (1)R = {1,3} and (i)R = {i} for every i > 2. In this space,
those subset of X which contains 3 but not 1 are not closed sets. But rest of the
subsets of X are closed sets. Here, the infinite closure space (X, clgr) is normal but
(X, clr) is not strongly normal because for two closed sets A = {1} and B = {2,4}
there doesn’t exist disjoint (x)R and (y)R separating A and B respectively.
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Theorem 2.7. A closure space (X, clg) is strongly normal if and only if for every
closed set A contained in (x)R, for some x there exists y such that A C (y)R C
cdr((y)R) C (z)R.

Proof. Let (X, clr) be a strongly normal space and let A = clr(A) be a closed set
contained in (z)R for some z € X. So A and B = (X — (z)R) are two disjoint
closed sets in X. Thus by strong normality of X, there exist disjoint (y) R and (w)R
such that A C (y)R,B C (w)R. Therefore A C (y)R and (y)R C (X — (w)R).
Since (X — (w)R) C (X — B) = ()R, A C (y)R C (X — (w)R) C (z)R. As
(X — (w)R) is a closed set containing (y)R and clr((y)R) is the smallest closed set
containing (y)R, A C (y)R C clr({y)R) C (X — (w)R) C (x)R) implies A C (y)R C
cdr((y)R) C ({(z)R). Conversely, let A = clr(A) and B = clr(B) be two closed sets
in X. Let ()R = X — B implies A C (z)R. By given hypothesis there exists y such
that A C (y)R C clr({y)R) C (z)R. Therefore, (y)R and (X — clr({y)R)) are two
disjoint open sets containing A and B respectively. Thus X is strongly normal. [

Theorem 2.8. In a strongly normal space every pair of disjoint closed sets can be
separated by disjoint open sets whose closures are disjoint.

Proof. Let X be a strongly normal space and clr(4) = A, clr(B) = B be two
disjoint closed sets in X. Since clr(A)Nclr(B) = ¢, we have clg(A) C (X —clr(B)),
where (X — clr(B)) is open. By strong normality of X, there exists an open
set (z)R of clr(A) such that clr(A) C (z)R C clr({x)R) C (X — clr(B)). So
cr((z)R)Nclr(B) = ¢. Since clr(B) C (X —clr({z)R)) is an open set containing
clr(B). Again by using strong normality, there exists an open set (y)R of clr(B)
such that clr(B) C (y)R C clr((y)R) C (X —clr({z)R)) which implies clr({y)R)N
cr((z)R) = ¢. O

Remark 2.9. The infinite closure space discussed in Example 2.3 is a strongly normal
closure space in which only disjoint closed sets {1} and {2} can be separated by
disjoint open sets (1) R and (2) R whose closures are {1} and {2, 3,4, ...} respectively.

The following example establishes that closure subspace of a strongly normal
space need not be strongly normal.

Example 2.10. Let X = {a,b,c,d} and R = {(a, a), (a,c), (b,a), (b,b), (c,a),
(d,a), (d,b), (d,c), (d, d)} be a binary relation on X. LetY = {a,b, c} be a subset of

X, then Ry = {(a, a),(a,c),(b,a),(b,b), (e, a)} is a subset of R. Here, (a)R = {a},
(O)R = {a,b}, ()R ={c,a}, (d)R = {a,b,c,d} and (a)Ry = {a}, (b)Ry = {a,b},
(¢)Ry = {a,c}. Note that (X,clg) is a closure space which is strongly normal but
(Y,clgry ) is not strongly normal because for two disjoint closed sets A = {b} =
clry (A) and B = {c} = clr, (B) there doesn’t exist disjoint (z)Ry and (y)Ry
separating A and B. Hence subspace of a strongly normal space need not be strongly
normal.

Theorem 2.11. Closed closure subspace of a strongly mormal space is strongly
normal.

Proof. Let Y be a closed closure subspace of X, A = clg, (A) and B = clg, (B)
be two disjoint closed sets in Y. Since Y is closed in X and clg, (A),clr, (B)
are closed in Y then by remark 1.12, clr(A) and clg(B) are closed in X implies
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cr(A)NY,clr(B) NY are closed in X. Since Y is a closed closure subspace of
X, by using theorem 1.14, clg, (A) = clr(A) NY,clr, (B) = clr(B) NY which
implies clg, (A),clr, (B) are closed in X. By strong normality of X, there exist
disjoint ()R and (y)R in X such that clg, (A) C ()R and clg, (B) C (y)R. Thus
((z)R)NY and ((y)R) NY are two disjoint open sets in Y containing A and B
respectively. Hence Y is normal. O

Definition 2.12. Let R be any binary relation then a closure space (X,clg) is
said to be regular if for any closed set A and a point « ¢ clr(A) there exist disjoint
open sets U and V containing A and a point z.

Definition 2.13. Let R be any binary relation then a closure space (X, clg) is said
to be strongly regular if for any closed set A and a point = ¢ A there exist distinct
u and v such that € (u)R and clr(A4) C (v)R.

Observation 2.14. Every strongly reqular space is reqular.

The example below establishes that, converse of the above implication is not
true.

Example 2.15. Let X = {a,b,c,d} and R be any binary relation on X, where
R = {(a,a), (a,0), (b,c), (c, o), (d,d)}. Then (a)R = {a,b}, (HR = {a,b},

(R = {c}, (d)R = {d} and clr({a}) = {a,b}, clr({b}) = {a,b}, clr({c}) = {c},
ClR({d}) = {d}7 CZR({a7b}) = {(l,b}, ClR({(l,C}) - {(I, b, C}v CZR({avd}) = {a7b7 d}7
cr({b,c}) = {a,b,c}, cr({b,d}) = {a,b,d}, clr({c,d}) = {c¢,d}, clr({a,b,c}) =
{CL, b7 C}7 ClR({aa b7 d}) = {a’v b7 d}v CZR({aa (& d}) =X, CZR({ba ¢, d}) = X, CZR(X) =
X, clr(¢) = ¢. Here, the closure space (X, clgr) is reqular because for every closed
set and a point not belonging to the closed set there exist disjoint open sets sepa-
rating the point and the closed set but (X, clgr) is not strongly reqular because for
closed set A = {c,d} = clr(A) and the point ‘b’ d there doesn’t exist (x)R and
(y) R respectively.

Remark 2.16. The above Example 2.5 is not regular because for closed set A =
{b} = clr(A) and a point ‘a’ disjoint from the closed set there doesn’t exist disjoint
disjoint open sets separating A and “a” respectively.

Example 2.17. Let X = {a,b,c} and R be any binary relation on X where R =
{@a). (@b, (,0), 0.0). (c;c)}. Then (@R ={a,b}, ()R = {a,b}, ()R = {c}.
Here, (X,clg) is strongly regular because for every closed set and the point not

belonging to the closed set there exist disjoint (x)R and (y)R containing closed set
and the point respectively.

Remark 2.18. The Example 2.3 discussed above is strongly normal but not strongly
regular as for the closed set A = {1,2,3} and the point “4” there doesn’t exist
disjoint = and y satisfying the conditions of strong regularity.

Theorem 2.19. If (X, clg) is strongly regular then for every point x with (x)R # ¢,
there exists (y)R such that x € (y)R C clr({y)R) C (z)R.

Proof. Let (X, clr) be a strongly regular space and let = be a point with ()R # ¢.
Since (z)R is open, A = clr(A) = (X — (z)R) is a closed set and = ¢ clr(A).
Since X is strongly regular, there exist disjoint (y) R and (w)R such that z € (y) R,
A C (w)R. Therefore z € (y)R C (X — (w)R) C (X — A) implies z € (y)R C (X —

27



28

R. Gupta and A. K. Das

(w)R) C {x)R. Since (X —(w)R) is a closed set containing (y) R and clr((y)R) is the
smallest closed set containing (y)R, x € (y)R C clr((y)R) C (X — (w)R) C ({(x)R)
implies z € (y)R C clr({y)R) C ((z)R). O

Theorem 2.20. Every strongly normal T1-space is strongly reqular.

Proof. Let A = clr(A) be a closed set in the closure space (X, clg) and z ¢ A.
Here, (X, clr) is T1 and singletons are closed in a T3-space. So {z} and A = clr(A)
are two disjoint closed subsets of X. By strong normality, there exists disjoint
(z)R and (y)R such that {z} C (z)R, A = clr(A) C (y)R. Hence X is strongly
regular. O

Definition 2.21. [1] Let (X1, clg,) and (X3, clg,) be two closure spaces. A func-
tion f : X1 — Xs is continuous at x € X, if and only if f((z)R1) C (f(x))R2. A

function from a closure space (X1, clg,) into a closure space (Xo, clg,) is said to be
continuous on X7 if and only if it is continuous at each point of X;.

Theorem 2.22. [1] Let f be a function from a closure space (Xi,clr,) into a
closure space (Xa,clg,) then the following conditions are equivalent:
(1) f is continuous.
(2) for every subset A of X1, f(clr,(A)) C clr,(f(A4)).
(3) the inverse image of every closed subset of Xa is a closed subset of X;.
(4) the inverse image of every open subset of Xo is an open subset of X .

Definition 2.23. [1] A function f : (X1,clr,) — (X2, clr,) is called open (closed)
if the image of an open (closed) subset of X; is an open (closed) subset of Xs.

The following Example shows that continuous image of a normal space need not be
normal.

Example 2.24. Let X, = {a,b,c,d} and Xy = {1,2,3,4} be two sets and Ry =
{(@a), (@b). (a,0) .0),(0,) (v.a), (.d), (¢,0) (dsc), (e,a), (d,d)} and Ry =
{(1,1), (1,3), (2,2), (2,3), (3,4), (4,4)} be two binary relations on X1 and Xo
respectively. By Example 2.5 (X1,clr,) is a closure space. Now (1)Ry = {1,3},
(2)Ry = {2,3}, (3)Ra = {3}, (4)R2 = {4} then clr,({1}) = {1}, clr,({2}) =
{2}, el (13}) = {1,2,3}, clm((4}) = {4}, eln,({1,2}) = {12}, eln,({1,3}) =
{17273}v clp, ({174}) = {174}7 Cle({2v3}) = {17273}7 Cle({2’4}) = {274}7 csz({&
1)) = X, clp,({1,2,3}) = {1,2,3}, clp, ({1,2,4}) = {1,2,4}, clp,({1,3,4}) = X,
clr,({2,3,4}) = X, clr,(X) = X, clp,(¢) = ¢. Note that (Xa,clr,) is a closure
space. The function f: (X1, clr,) — (X2, clr,) defined below is continuous.

2 ifx =0,

) 3 ifr=a,
f(z) = 1 ifz=c
4 difzx=d.

Here, the closure space (X1,clr,) is normal by example 2.5 but (Xa,clg,) is not
normal because for disjoint closed sets A = {1} = clg,(A) and B = {2} = clg,(B)
there doesn’t exist disjoint open sets separating A and B.

The following Example shows that continuous image of a strongly normal space
need not be strongly normal.



New separation axioms on closure spaces generated by relations

Example 2.25. Let X1 = {a,b,c} and Xo = {1,2,3} be two sets where, Ry =
{(@a), 0,5) (0.0) (c.0) (;0} and By = {(1,1), (2.1), (2.2), (3,1), (3,3)} be
two binary relations on X, and Xy respectively. Then (a)Ry = {a}, (byRy = {b,c}
and (c)Ry = {c}. Thus, clg,(a) = {a}, clg, (b) = {b}, clr,(c) = {b,c}, clr,(a,b) =
{a,b}, clgr,(a,c) = X, g, (b,c) = {b,c}, cr,(X) = X, clg,(¢) = ¢. Here,
(X1,¢lR,) is a closure space. Now (1)Ro = {1} (2)R, = {1,2} (3)R. = {1,3}.
Then clp,(1) = X cgr,(2) = {2} cdgr,(3) = {3} clr,(1,2) = X clg,(1,3) = X
cr,(2,3) = {2,3} cp,(X) = X clg,(¢) = ¢. Note that, (Xo,clg,) is a closure
space. The function f: (X1, clr,) — (X2, clr,) defined below is continuous.

3 ifx=0,
flz)=13 2 ifz=a,
1 ifzx=c
Here, the closure space (X1, clgr,) is strongly normal but (Xa,clr,) is not strongly
normal because for disjoint closed sets A = {2} = clg,(A) and B = {3} = clgr,(B)
there doesn’t exist disjoint (x)R and (y)R separating A and B respectively.

Since continuous image of a strongly normal space is not not strongly normal,
the following theorem establishes preservation of strong normality under closed
continuous onto mapping.

Theorem 2.26. Let f: (X1,clr1) — (Xo,clr,) be a continuous closed, surjection
and (X1, clr,) is strongly normal then (Xa,clr,) is also strongly normal.

Proof. Let A = clg,(A) and B = clg,(B) be two disjoint closed sets in Xs. Since
f is continuous, f~!(clr(A)) and f~!(clgr(B)) are disjoint closed sets in X;. Thus,
by strongly normality of X, there exist disjoint open sets (p)R; and (¢)R; such
that f~1(A) C (p)Ry and f~1(B) C {(q)R;. Since f is a closed map and (X —
(p)R1), (X1 — (¢)Ra1) are closed in X; implies (f(X71 — (p)R1) and (f(X1 — (¢)R1)
are closed in Xo. So Xo — f(X7 — (p)R1) and X5 — f(X;1 — (¢)R1) are open in Xo.
Thus,

F7HA) € (p)R1 = (X1 — (p)R1) C (X1 — f71(A))

= f(X1 — (p)R1) C f(X1 = f(A4))

= (X2 — A)
Thus, A C Xo — f(X1 — (p)R1) = (z)Ra. Now f~1((z)R2) = f~1(X2 — f(X1 -
(p)R1) = (p)Ry1. Thus there exists an open set (z)Rs containing A such that

Ff~Y({(z)R2) C (p)R;. Similarly there exists an open set (y)Rs containing B such

that f~'((y)R2) C (g)R1. Now f~'((z)Ro) N [T ({y)R2) C (p)Ra N ()R = ¢
implies (z)Ro N (y)R2 = ¢. Hence (X, clp,) is strongly normal. O

The following Example shows that continuous image of a regular space need not be
regular.

Example 2.27. Let X1 = {a,b,¢,d} and Xo = {1,2,3,4} be two sets and Ry =
{(@a), @), o), (0, (@} and Ry = {(1,1), (1,2), (2,3), 2,9), (3,4),
(3,3), (4, 4)} be two binary relations on X1 and Xo respectively. By example 2.15

(X1,¢lRr,) is a closure space. Now, (1)Rs = {1,2}, (2)Rs = {1,2}, (3)Rs =
(3,4}, )Ry = {4} then clp, (1) = {1,2}, clr,({2}) = {1,2}, clr.({3}) = {3},
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clr, ({4}) = {374}7 clp, ({1’2}) = {172}7 CZRQ({:[?S}) = {17273}7 CZRz({174}) =X,
CZR2({273}) = {17273}7 Cle({274}) = X, CZR2({374}) = {374}’ ClR2({17273}) =
(1,23}, elp, ({1,2,4)) = X, clp, ({1,3,4}) = X, elp, ({2.3,4}) = X, clg, (X) = X,
clr,(¢) = ¢. The function f: (X1,clr,) = (X2, clr,) defined as follows:

2 ifx =0,

)1 ifr=a,
fz) = 3 ifxz=c,
4 ifzx=d.

18 continuous.

Here, the closure space (X1,clgr,) is reqular but (Xo,clgr,) is not regular because
for a closed set A = {3} = clr,(A) and a point 4 disjoint from the closed set there
doesn’t exist disjoint open sets separating A and 4.

The following Example shows that continuous image of a strongly regular space
need not be strongly regular.

Example 2.28. Let X1 = {a,b,c} and Xo = {1,2,3} be two sets where, Ry =
{(a,a), (@,b) (b.a) (40) (e;0)} and By = {(1,1), (1,3), (1,2) (2,2), (3,1), (3,2)
(3,3)} be two binary relations on X1 and Xo respectively. Here closure space
(X1,clpr,) is strongly reqular by Example 2.17. Now (1)Ry = {1,2,3} (2)Rs = {2}
(3)R2 = {1,2,3}. Then clr,(1) = {1,3} clr,(2) = X clg,(3) = {1,3} clr,(1,2) =
X cp,(1,3) ={1,3} clr,(2,3) = X clp,(X) = X clr,(¢) = ¢. Note that (X2,clg,)
is a closure space. The function f : (X1,clr,) — (Xa,clr,) defined below is con-
tinuous.

3 ifx=0,
flz)=< 1 ifz=a,
2 ifx=c.

Here, (X1, clRr,) is strongly regular but (X2, clr,) is not strongly regular because for
closed set A = {1,3} = clr,(A) and the point “2” there doesn’t exist disjoint (x)R
and (y)R separating A and the point “2” respectively.

Definition 2.29. [1] A function f : (X1,clgr,) = (X2, clr,) is said to be a homeo-
morphism if f is one-to-one correspondence, continuous and open.

Theorem 2.30. Let f : (X1,clr1) — (X2, clr,) be a homeomorphism and (X1, clg, )
is strongly reqular then (Xa,clr,) is strongly regular.
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